

 Console & Windows
Programming Using C#

Application
Programming (CO453)

Part A Weeks 1-3

 Page 2 of 28

C# Console and Windows Programming using Visual C#.Net

 Page 3 of 28

C# Console and Windows Programming using Visual C#.Net

Classwork (2 Tasks)

Look at project Task5_1.csproj. Compile and run it. You see
that it asks you to enter a number (miles) and then converts
this to feet.

• Look at the code (see next page) and notice that the program has one class called Converter.

• The Converter class has a method called milesToFeet. It has one parameter (miles) and returns a
result (feet) so it does the following:

Note: there are 1760 yards in a mile and 3 feet in a yard.

• Converter has another method called getNumber that also has a parameter (prompt). The getNumber
method is very flexible because it can use any string prompt to ask for any number and return the result
(num) .. so it does the following:

• Notice how the test() method is used. It has the following algorithm:
1. use the getNumber() method to get the enter a number of miles
2. use the milesToFeet() method to convert this to feet
3. Print out both numbers in a suitable sentence

Task 4.1
1. Add another method called feetToMiles() and modify the test() method so it does another conversion from

feet into miles.
2. Note that if you feed in the result that came from milesToFeet() you should get the number you started with

if everything is working correctly!
3. Modify the test() method so that it displays a small menu of choices (as shown here) and the user can make

a selection from the menu. The menu of choices is repeated using a loop until the user chooses the quit
option 3.

milesToFeet miles feet

Unit 4: Methods with Parameters

4.1 Converter

getNumber prompt num

Converter Test
============
1. Convert miles to feet
2. Convert feet to miles
3. Quit test

 Page 4 of 28

C# Console and Windows Programming using Visual C#.Net

 class Converter

 {

private double numMiles, numFeet;

public static void Main() // program starts executing here
{
 Converter myConverter = new Converter (); // create a new object
 myConverter.test(); // call the object’s test method
}

public void test()
{
 numMiles = getNumber("miles"); // input number of miles
 numFeet = milesToFeet(numMiles); // use the milesToFeet method
 Console.WriteLine (numMiles + " miles is " + numFeet + " feet");
}

public double getNumber(string prompt)
{
 double num; // local variables for input
 string input;
 Console.Write("Please enter the number of " + prompt + " : ");
 input = Console.ReadLine();
 num = Convert.ToDouble(input); // convert to a double
 return num; // return value back
}

} // end of Converter class

public double milesToFeet(double miles)
{
 double feet;
 feet = 1760 * 3 * miles;
 return feet;
}

 Page 5 of 28

C# Console and Windows Programming using Visual C#.Net

Look at project Task5_2.csproj. Compile and run it. You
see that you are asked to enter 6 pieces of information ...
these are then used in chapter 1 of a Horror story.

• Look at the code (see next page) and notice that the program has one class called Book.

• The Book class has a method called ask. It has one parameter (prompt) and uses this string to ask for
a piece of information. This (answer) is then returned so it can be used later.
So the ask() method does the following:

• Also note that the Book class has methods called getDetails() and writeChapter1()
o getDetails() asks for all the information for the chapter.
o writeChapter1() uses this information in a spooky story!

Task 4.2
1. Add another method called writeChapter2() for this riveting story. You must use some of the

information already gathered but you must also use getDetails() to pick up 3 extra pieces of information
.. including the gender of the person in the story and use these in your new chapter.

2. You will have noticed that chapter 1 (and perhaps chapter 2) uses the word 'he' .. but what if the person
in the story is female? If you have completed part 1 above, you have entered the gender of the person
.. you need to change 'he' to 'she' .. but only if the person is female!! Here are some hints ..

• Define a new string variable called gender. Use this in your story chapters wherever he or she
appears.

• Create a new method called checkGender(). This should be used to set the value of gender
to either “he” or “she” depending on the gender that was entered.

• Now you should be able to get your story to print correctly .. test it with both genders and see
that it works.

4.2 Horror Story

ask prompt answer

 Page 6 of 28

C# Console and Windows Programming using Visual C#.Net

Independent Studies (2 Tasks)
The following exercises are to be done individually and independently, in your own time.

• A constructor is a special method which has the same name as the class it is in. The
constructor is called automatically when a new object is created.

• The constructor can be used to initialise a new object in various ways.

• In this example the constructor for the Book class would look like this:
public Book()
{
}

Task 4.3
• Create a Constructor method for the Book class that will set default values for all the variables in the

story.

• In your Main() method you should then allow the user to choose either to enter values or to use the
defaults

ABOUT YOUR LOGBOOK
For this independent study enter in your logbook:

• Input-Output Diagram

• Class Diagram

• Method algorithms

• Source Code

• Test Plan (with results)

4.3 Constructors

 Page 7 of 28

C# Console and Windows Programming using Visual C#.Net

 class Book

 {

private string author;
private string name, town, animal, weapon, job;

public static void Main() // program starts executing here
{
 Book myBook = new Book(); // create a new Book object
 myBook.getDetails(); // call its getDetails() method
 myBook.writeChapter1(); // call its writeChapter1() method
}

public string ask(string prompt) // use prompt to ask for information
{
 string answer;
 Console.Write(prompt);
 answer = Console.ReadLine();
 return answer;
}

public void getDetails() // keep using ask() to get information
{
 author = ask("Please type your name : ");
 name = ask("Please type a friend's name : ");
 town = ask("Now give me the name of a town : ");
 animal = ask("Now a type of animal : ");
 job = ask("Now a type of job : ");
 weapon = ask("And your weapon of choice : ");
}

} // end of Book class

public void writeChapter1() // write chapter using information gathered
{
 Console.Clear();
 Console.WriteLine("A Horror Story : by " + author);
 Console.WriteLine("===============================");
 Console.WriteLine("It was a dark night in " + town + " and " + name

+ " could hear " + animal + "s screaming in the distance.");
Console.WriteLine(name + " staggered terrified through the

streets of " + town + ", realising he had been followed.");
Console.WriteLine("In the shadow of a doorway, a demented " + job
 + " waited, clutching a menacing " + weapon

+ " in his hand.");
}

 Page 8 of 28

C# Console and Windows Programming using Visual C#.Net

1. Create a new project with a class called BMI.
2. Set up appropriate variables (read below first)

3. Add a new method called getDetails() which will allow the user to enter their weight
(in kgs) and height (in metres)

4. Another method called calcBMI() returns a value for the BMI using this formula :
BMI = weight in kg/(height in metres)2

5. Another method displays the BMI value and a message depending on the value of the
BMI

BMI less than 18.5 … Underweight
BMI 18.5 up to 25 … Desirable weight for size
BMI 25 up to 30 … Overweight
BMI 30 up to 40 … Obese

 BMI 40 or over … Severely Obese
6. Your Main() method should create a new BMI object and then call the appropriate methods to enter the

user’s weight and height and then calculate and display the BMI value and message

Extra:

• Modify the program so that it can cope with either metric measurements (kg and metres) or imperial
(pounds and inches)

Calculating BMI (Body Mass Index)
• BMI = weight in kg/(height in metres)2
• BMI = weight in pounds x 703/(height in inches) 2

4.4 Body Mass Index

 Page 9 of 28

C# Console and Windows Programming using Visual C#.Net

Classwork (3 Tasks)

Look at project Task6_1.csproj. Compile and
run it.

• Look at the code below

• Notice that the program has one class called Tournament.

• It defines an integer array called scores to hold all the scores in the tournament.

• The constructor for the class then actually creates the array of the required size.

Unit 5: Arrays

5.1 Tournament Scores

 class Tournament
 {

int[] scores; // define scores as an integer array
const int MAX = 6; // set a constant size

public static void Main() // program starts executing here
{
 Tournament myTournament = new Tournament(); // create a new object
 myTournament.getScores(); // call its getScores method
}

public Tournament() // the class constructor
{
 scores = new int[MAX]; // create a new array of size MAX
}

public void getScores()
{
 Console.WriteLine("Inputting the Tournament Scores");
 Console.WriteLine("=========================");
 for (int i = 0; i < MAX; i++)
 {
 Console.Write("Enter score number " + (i + 1) + " : ");
 scores[i] = Convert.ToInt32(Console.ReadLine());
 }
}

} // end of Tournament class

 Page 10 of 28

C# Console and Windows Programming using Visual C#.Net

Task 5.1

1. Add another method to the class, called showScores() .. this should clear the screen and then display
all the scores in the form:

Tournament Scores
================
Player 1 scored < >
Player 2 scored < > etc.

2. Change the size of the tournament to 12. Check that it still works OK.
3. Put source code and sample outputs in your logbook

Look at project Task6_2.csproj. Compile and run it.

The program presents you with a list of song tracks and you have to vote for your favourite.

Of course it is far from finished!

• Examine the existing code on the next page

• modify the program to complete these tasks:

Task 5.2
The program has to keep a count of all the votes for each song track.

1. Create a new integer array called votes that will be used to count the votes for each track

2. Now inside the getVotes() method you need to add one to the appropriate vote in the votes array.

There are several ways of doing this. e.g. if the vote was for track 5 then add 1 to votes[4]

(remember arrays start counting from 0)

3. Get the program to repeat for many voters by using a loop inside the run() method

4. Add another method called showVotes() which displays all the vote counts like this:

MP3 Track Votes
==============
Track 1 had < > votes
Track 2 had < > votes etc.

Total Number of Votes : < >

5. Expand the program to work for 10 tracks and add your own favourites to the list.

Check that everything works OK.

6. Use MAX inside the getVotes() method so that it always asks you to vote correctly depending on the

number of tracks e.g. Choose 1 – 10 etc.

Extra
• Can you get showVotes() to display the track titles as well as the votes?

Put source code and sample outputs in your logbook

5.2 MP3 Chart Voter

 Page 11 of 28

C# Console and Windows Programming using Visual C#.Net

 class Mp3Chart
 {

string[] topTen; // define a string array called topTen
const int MAX = 5;

public static void Main() // program starts executing here
{
 Mp3Chart myChart = new Mp3Chart(); // create new object
 myChart.run(); // call its run method
}

public Mp3Chart() // constructor
{
 topTen = new string[MAX]; // create a new array of correct size

 topTen[0] = "Revolution"; // initialise the array values
 topTen[1] = "Mera Dil Tuta Hain";
 topTen[2] = "CandyMan";
 topTen[3] = "Ruby Tuesday";
 topTen[4] = "Old Man";
}

public void run()
{
 showMusicList();
 getVotes();
}

} // end of Mp3Chart class

public void showMusicList()
{
 Console.Clear();
 Console.WriteLine("\tMusic List");
 Console.WriteLine("\t==========");
 for (int i=0; i < MAX; i++)
 {
 Console.WriteLine("\tSong " + (i + 1) + " is " + topTen[i]);
 }
}

public void getVotes()
{
 int userVote;

 Console.WriteLine("\tSelect your favourite Song");
 Console.WriteLine("\t==========================");
 Console.Write("\tChoose 1 - 5 : ");
 userVote = Convert.ToInt32(Console.ReadLine());
}

 Page 12 of 28

C# Console and Windows Programming using Visual C#.Net

Modify the Tournament class of 5.1 as follows to deal with names as well as scores

1. Add a string array called names to the class.
2. Change the name of the getScores() method to getDetails() and use it to input all the names as well

as the scores, like this:

Input Names and Scores
====================
Enter player 1 name : < >
Enter player < > score : < >
Enter player 2 name : < >
Enter player < > score : < > etc.

3. Add a new method called showDetails() and use it to display all the names and scores, like this:
Tournament Results
=================
Player < > scored < >
Player < > scored < > etc.

4. Add a new method called showBest() .. it should look through the scores to find the highest score and

then print out the name and score for this person.

Put source code and sample outputs in your logbook

5.3 Tournament Names

 Page 13 of 28

C# Console and Windows Programming using Visual C#.Net

Independent Study (3 Tasks)
The following exercises are to be done individually and independently, in your own time.

Computers spend a lot of time sorting things into order and
there are many different sorting algorithms to choose from.
One of the simplest (and slowest) is called the Bubble Sort. It
has one loop contained inside another loop as shown here.

Your Tasks

1. Create a new project for this task with a class called
Bubble

2. Add a new method called inputNumbers() which inputs 6 numbers into an array
3. Add a second method called display() which clears the screen and displays all the numbers one above

the other.
4. Make sure the program works correctly so far
5. Now add a third method called sortNumbers() which applies the Bubble Sort algorithm to sort the

numbers into numerical order
6. Call the methods in the right order and get the sorting to work.
7. Try it for 20 numbers
8. Add 3 more methods to apply a similar technique to sorting a list of names into alphabetical order.

5.4 Sorting Bubble Sort for N items
 loop N times
 loop from 0 up to N-1
 if current item > next item
 swap the two items

 end if
 end loop
 end loop

 Page 14 of 28

C# Console and Windows Programming using Visual C#.Net

It has been decided to do a traffic survey at a particularly busy section of road.
Traffic is counted automatically during 24 1-hour time periods in a typical day and the counts are then stored in
an array in the program for later analysis.
You are to simulate this using an array for the 24 periods.

• Create a new project with a class called Traffic.

• Set up an integer array called trafficCount with 24 elements.

• Define a method called enterCounts() which allows the user to enter 24 counts into the array.

• Another method called showTotal() should calculate and display the total number of cars in the array.

• A third method called busiest() should work out and display the busiest time of day.

• A forth method called showData() should output all the data in a suitable table with the percentage of
the total.

• Provide a report() method that does the following:
▪ calls enterCounts()
▪ calls showData()
▪ calls showTotal()
▪ calls busiest()

Your results should look something like the following:

 Traffic Report

 Hour Car Count Percentage of Total

 1 1200 7.7%
 2 1155 6.4%
 etc.

 Total Car Count for the day = 15546
 Busiest hour = 7

Put source code and sample outputs in your logbook

5.5 Traffic Survey

 Page 15 of 28

C# Console and Windows Programming using Visual C#.Net

Look at project Task7_2.csproj. Compile and run it. This simulates an incomplete booking system for the
Bates Motel. Your task is improve the functionality of the program.

This is a menu-based program for booking and vacating rooms.

There are 5 options available on the repeating menu:
 1. Book a room
 2. Vacate a room
 3. Display ALL Room Details
 4. Vacate ALL rooms
 5. Quit

But only item 1 (Book a Room) is currently implemented

NOTES

• The motel has 20 rooms.
• an integer array called rooms is used to store the number of guests in each room.
• Notice the size of this array has been set to MAX+1 so we can use room numbers 1 to

20

Task 5.6
1. Start by implementing item 3 of the menu. Do this with a method called

showAllRooms() This should display all the room details as follows:
Bates Motel Room Status
=====================
Room 1 0 guests
Room 2 2 guests etc.

2. Implement menu item 2 with a method called vacateOneRoom() which asks you
which room you want to vacate and then puts 0 into this position of the array

3. Now implement menu item 4 which should allow you to vacate all the rooms. Use a
method called vacateAll() which should put 0 into every position in the rooms array.

4. Check that all is working correctly.

Put source code and sample outputs in your logbook

1. Notice that you can currently double-book a room in the motel. If you choose a room that
is already booked, the old booking is overwritten! Add some code to prevent this from
happening in a user-friendly way.

2. Add a new Item 5 : Management Information on the menu. This should use a
suitable method and provide useful information such as how many rooms are booked,
how many guests are in the hotel and also the room numbers of all the empty rooms.

3. It is possible to book any number of guests into a room but the room limit is 4. Provide
a user-friendly mechanism which only allows up to 4 guests per room.

5.6 The Bates Motel

Extra: The Bates Motel (contd)

 Page 16 of 28

C# Console and Windows Programming using Visual C#.Net

 class Motel
 {

int[] rooms; // define an integer array called rooms
const int MAX = 21;

public static void Main() // program starts executing here
{
 Motel BatesMotel = new Motel(); // create new object BatesMotel
 BatesMotel.runMotel(); // call its runMotel method
}

public Motel() // constructor
{
 rooms = new int[MAX]; // allow room numbers from 1 to 20
}

public void runMotel()
{
 string choice = "";
 do
 {
 Console.Clear();
 Console.WriteLine("The Bates Motel");
 Console.WriteLine("===============");
 Console.WriteLine("1. Book a room");
 Console.WriteLine("2. Vacate a room");
 Console.WriteLine("3. Display ALL Room Details");
 Console.WriteLine("4. Vacate ALL rooms");
 Console.WriteLine("5. Quit");
 Console.Write("Enter your choice : ");
 choice = Console.ReadLine();
 if (choice == "1")
 {
 bookRoom();
 }
 }
 while (choice != "5"); // repeat until 5 is chosen from the menu
}

} // end of Motel class

public void bookRoom()
{
 int roomNumber, guests;
 Console.WriteLine("\nThe Bates Motel");
 Console.WriteLine("===============");
 Console.WriteLine("Book a room");
 Console.Write("Enter the room number : ");
 roomNumber = Convert.ToInt32(Console.ReadLine());
 Console.Write("How many guests : ");
 guests = Convert.ToInt32(Console.ReadLine());
 rooms[roomNumber] = guests; // make the booking
 Console.WriteLine("Room " + roomNumber + " booked for " + guests + " people");
 Console.ReadKey(); // wait for key press
}

 Page 17 of 28

C# Console and Windows Programming using Visual C#.Net

This week we shall begin a slightly larger exercise .. the Scissors-Paper-Stone Game.
You should know the rules of the game before you start:

Starting the Project
• This project has already been started for you but it is incomplete and needs a lot of work to finish it.

• Start by opening the SPSProject and run it .. set the keyboard Caps Lock ON and when you are

asked for your choice, type: SCISSORS.

• The computer will now make its random
choice and you should then see a crude
picture of your choice and a result that is
either:

o a DRAW or
o NOT YET DETERMINED

(depends what the computer picked)

• Run the program again and try choosing
PAPER or STONE

• Examine the existing code for the
program (see later pages)

• Clearly the program is nowhere near
finished so you should try adding more
code to achieve the following tasks:

Project Unit: C# Project:
The Scissors-Paper-Stone Game

The Basic Rules (playing against the computer)

=====================================
• The player chooses either: Scissors, Paper or Stone
• The computer also chooses one of these at random
• There are various possible results:

• If player and computer choose the same thing, the result is a Draw.
• Scissors win against Paper (because scissors cut paper)
• Scissors lose against Stone (because stone blunts scissors)
• Paper wins against Stone (because paper wraps round stone)

 Page 18 of 28

C# Console and Windows Programming using Visual C#.Net

Basic Project

• Change the background and foreground colours to your own choice.

• Modify the program so that all the computer choices are described correctly, instead of "NOT YET
DETERMINED" as above (e.g. The computer chose STONE)

• Get the program to show the result correctly for all possible situations
(e.g. THE COMPUTER WINS or YOU WIN) .. instead of "not yet determined" as above.

• Get the program to draw the computer choice as well as the player choice.

• Add a variable for the player name and add code to pick up the name at the start of the program.

• The player name should be used wherever possible e.g
What is your choice, Brian?
Brian picked SCISSORS. The computer picked PAPER
Brian WON!! Because Scissors Cut Paper.

• Get the program to work for both uppercase and lowercase inputs
e.g. it should work if you choose SCISSORS or scissors or Scissors, etc.

Extension Work 1

• You are to use a scoring system in the game so you must add 2 variables for the
ComputerScore and the PlayerScore.

• Implement the scoring as follows:
o 2 points for a WIN
o 1 point each for a DRAW

• Add a new method called showScores()
which prints the scores for the player and
computer as shown here:

• Now get the game play to repeat until one of the
scores reaches 20.

• Create a new method called finish() which is
called when the game loop ends.

• The finish() method should clear the screen and
then print the results as shown here.

• Use an appropriate picture:
o ThumbsUp (player win)
o ThumbsDown (computer win)
o Smile (draw)

• Note: you will find included some appropriate
draw methods for you to use.

Extension Work 2

• Make a copy of your complete Game folder so
you don’t lose your original game.

• Create a new Class in your project and call this
Pictures

• Remove all the draw methods from your Game
class and put them into your Pictures class.

• Get the game to work again using pictures from
the Pictures class .. you will have to make several
changes e.g. the draw methods should be public instead of private and you will need to create a
Pictures object within the Game class.

• Most of the pictures can be positioned anywhere on the screen, but some of them can’t .. can you
modify these methods so they too can be drawn anywhere?

 Page 19 of 28

C# Console and Windows Programming using Visual C#.Net

 class Game

 {

string compChoice;
string playerChoice;
Random randy;

public static void Main() // program starts executing here
{
 Game myGame = new Game (); // create a new Game object
 myGame.play(); // call its play method
}

public Game() // game constructor
{
 randy = new Random(); // create a new Random object
}

public void play() // play the game (unfinished)
{

setupScreen();
introduction();

 getPlayerChoice();
 getComputerChoice();
 drawPlayerChoice();
 printChoices();
 showResult();
 Console.ReadKey(); // wait for a key press
}

// PTO

private void setupScreen()
{
 Console.Title = " The Great Scissors-Paper-Stone Game";

 Console.SetWindowSize(100, 36);
 Console.SetBufferSize(100, 36)

 Console.BackgroundColor = ConsoleColor.Red;
 Console.ForegroundColor = ConsoleColor.White;
 Console.Clear(); // clear screen in chosen colour
}

private void introduction()
{
 Console.WriteLine("\tPlay the Scissors Paper Stone Game");
 Console.WriteLine("\t============================");
}

private void getPlayerChoice()
{
 Console.WriteLine("\n\tWhat is your choice ?");
 Console.Write("\tScissors Paper or Stone : ");
 playerChoice = Console.ReadLine();
}

 Page 20 of 28

C# Console and Windows Programming using Visual C#.Net

// Game class continued

private void getComputerChoice() // unfinished
{
 int num;
 num = randy.Next(3); // pick a random number (0, 1 or 2)
 if (num == 0)
 {
 compChoice = "SCISSORS";
 }
 else
 {
 compChoice = "NOT YET DETERMINED";
 }
}

private void printChoices()
{
 Console.WriteLine("\n\t You picked " + playerChoice);
 Console.WriteLine("\tThe computer has picked " + compChoice);
}

private void drawScissors(int x, int y) // draw at x, y
{

Console.SetCursorPosition(x, y++); // set start position then add 1 to y
Console.Write(" \\ /"); // etc. for rest of

drawings

 Console.SetCursorPosition(x, y++);
 Console.Write(" \\ /");

private void drawPlayerChoice()
{
 if (playerChoice == "SCISSORS")
 {
 drawScissors(10, 5); // draw Scissors at 10, 5
 }
 else if (playerChoice == "PAPER")
 {
 drawPaper(10, 5);
 }
 else if (playerChoice == "STONE")
 {
 drawStone(10, 5);
 }
}

private void showResult()
{
 if (playerChoice == compChoice)
 {
 Console.WriteLine("\n\tA DRAW!!");
 }
 else
 {
 Console.WriteLine("\n\n\t Result not yet Determined !!!");
 }
}

 Page 21 of 28

C# Console and Windows Programming using Visual C#.Net

SPS Game Project Deliverables
==========================
Include the following in your logbook:

• Fully Commented Source Code
• Sample Screen shots
• Completed Test Plan
• Class Diagram(s)
• Commentary on success (or otherwise)

 Page 22 of 28

C# Console and Windows Programming using Visual C#.Net

Console Screen Instructions

Console.BackgroundColor = ConsoleColor.Blue; // set a background colour
Console.ForegroundColor = ConsoleColor.Yellow; // set a foreground colour
Console.Clear () ; // clear the screen
Console.SetCursorPosition(5, 10); // x,y position on screen

Pausing the Program

Console.ReadKey () ; // waits for a key to be pressed

Delay for a time

System.Threading.Thread.Sleep (1000);

 // gives a delay of 1 second (1000 milliseconds)

The Math.Pow() function
Use the Math.Pow() function to return the power of a number: e.g.

cube = Math.Pow(number, 3);
square = Math.Pow(number, 2);

Converting a string into upper case

choice = choice.ToUpper() ;

 converts the string choice into upper case (e.g. yes becomes YES)

Random Number Generation

• First we must create a new object from the Random class .. e.g.
Random rand = new Random(); // creates a new object called rand

• Then you can use rand.Next() to pick the next number e.g.
 // pick a random number between 0 and 5 and store in an int variable n
// add 1 to get a number between 1 and 6
n = rand.Next(6) + 1; // puts either 1,2,3,4,5 or 6 into n
(or use n = rand.Next() % 6 + 1)

Output of Decimal Places

• If you want to print a double type of variable (num) to 2 decimal places:
Console.WriteLine("The answer is " + num.ToString("0.00"));

Alternative Way of Printing Variables

• Instead of :
Console.WriteLine("The total of " + n1 + " and " + n2 + " is " + total);
 You could write:
Console.WriteLine("The total of {0} and {1} is {2}", n1, n2, total);
// n1, n2 and total are put in positions {0} {1} and {2} respectively

• or an alternative if you want 2 decimal places:
Console.WriteLine("The total of {0:F2} and {1:F2} is {2:F2}", n1, n2, total);
// this formats all the numbers to Fixed 2 decimal places

Inputting Numbers

• First input into a string variable e.g.
input = Console.ReadLine();

• Then convert this string to the right type and pop into a variable e.g.
num = Convert.ToDouble(input); or
num = Convert.ToInt32(input); etc.

Some Extra Useful C# Stuff

 Page 23 of 28

C# Console and Windows Programming using Visual C#.Net

Appendix A: The Basics

1. Console Input and Output
 name = Console.ReadLine(); .. store input in a name variable (defined as string)
 Console.WriteLine("I am " + name); .. output a message with text joined to a name variable
 num1 = Convert.ToDouble (Console.ReadLine()); .. enter string and convert to a double
 num2 = Convert.ToInt32 (Console.ReadLine()); .. enter string and convert to an integer

2. Variables
 int count; .. define a variable called count to store an integer number
 double num; .. define a variable called num to store a double (decimal) number
 string name; .. define a variable called name to store a string (text or words)

3. Assignments to Variables (must be defined first)
 count = 0; .. put 0 into the count variable (previously defined as int)
 num = 5.67; .. put 5.67 into the num variable (previously defined as double)
 name = "Fred Bloggs"; .. put these 11 characters in the name variable (defined as string)

4. Calculations
 count ++; .. add 1 to the value of the count variable
 count --; .. subtract 1 from the value of the count variable
 count = count + 3; .. add 3 to value of the count variable (or use count += 3;)
 count = count - 6; .. subtract 6 from the count variable (or use count -= 6;)
 av = (num1 + num2 + num3 + num4) / 4; .. work our average of 4 numbers
 tax = bill * 17.5 / 100; .. work out 17.5 percent tax on your bill

5. Loops (iteration)
 a. The while loop

 an infinite loop

b. The for loop

int count = 0; // initialise a loop counter to zero

while (count < 10) // continue while loop counter is less than 10
{
 Console.WriteLIne (“The count is " + count); // repeated
 count ++; // keep loop going by adding 1 to counter
}

// initialise loop counter; continue while count less than 10 ; add 1 at end of loop

for (int count = 0; count < 10; count ++)
{
 Console.WriteLine (“The count is " + count); // repeated 10 times
}

while (true) // continue the while loop forever
{
 Console.WriteLIne ("Yippeeee!!"); // repeated forever
}

 Page 24 of 28

C# Console and Windows Programming using Visual C#.Net

 c. The do while loop

6. Selection
 a. The if statement

 b. The if else statement

 c. The switch statement

7. Conditions
 (a == b) .. a is equal to b ?
 (a > b) .. a is greater than b ?
 (a < b) .. a is less than b ?
 (a >= b) .. a is greater or equal to b ?
 (a <= b) .. a is less than or equal to b ?
 (a != b) .. a is NOT equal to b ?

int count = 0; // initialise a loop counter to zero

do
{

count ++; // keep loop going by adding 1 to loop counter
Console.WriteLine (“The count is " + count); // repeated message

}
while (count < 10); // continue while loop counter is less than 10

 if (count == 4) // if count is equal to 4
 {
 Console.WriteLine (“We are half way");
 }

 if (count >= 4) // if count is greater or equal to 4
 {
 Console.WriteLine (“We have reached half way");
 }
 else
 {
 Console.WriteLine ("We are NOT half way yet");
 }

 switch(count) // use count value to switch to various cases below:
 {
 case 1: // i.e. if count value = 1
 Console.WriteLine (“We are just starting"); break;
 case 2: case 3: case 4:
 Console.WriteLine (“We are on our way"); break;
 case 4:
 Console.WriteLine (“We are half way"); break;
 default:
 // do nothing for any other values break;
 }

 Page 25 of 28

C# Console and Windows Programming using Visual C#.Net

8. Multiple Conditions

 (a == b || a == c) .. a is equal to b OR a is equal to c ?
 (a == b || a == c || a == d) .. a is equal to b OR a is equal to c OR a is equal to d ?
 (a == b && a == c) .. a is equal to b AND a is equal to c ?
 (a <= 100 && a >= 0) .. a is less than or equal to 100 AND a is greater or equal to 0 ?

9. Classes, Objects and Methods

 // this defines a simple class Meal which has one variable, one method, one constructor

10. Methods with parameters
• this defines a method setTax()

which has 1 parameter (amount)
and returns a double value

• this method is defined inside a
class e.g the Meal class above

• to use it, you can 'call' it like this:
 vat = myMeal.setTax(Bill); // assume myMeal is the object created from Meal

this passes the value of Bill to the method and picks up a returned tax value from it.

11. try/catch (simple version : to trap errors or exceptions)
 try
 {
 // enter instructions to be checked here
 }
 catch
 {
 // error message display here
 }

 public double setTax(double amount)
 {
 double taxAmount; // local variable

taxAmount = amount * 17.5/100;
return taxAmount;

 }

class Meal // define a class called Meal
{
 private string food; // the class has one class variable (attribute or field)

public static void Main() // program starts executing here
{
 Meal myMeal = new Meal(); // create a new myMeal object

 myMeal.getFood(); // call the object’s getFood() method
 }

 public Meal() // this is the Meal class constructor
 {
 food = "Fish and Chips"; // this sets the default food
 }

 public void getFood() // define a method getFood()which returns nothing (void)
 {
 Console.WriteLine("What would you like to eat?");
 food = Console.ReadLine(); // input into the class variable food
 }
}

 Page 26 of 28

C# Console and Windows Programming using Visual C#.Net

Assessment of CO453 Application Programming

1. This module is assessed by coursework. There are three parts to this coursework

(Part A, B and C). There are study packs for each of the three parts. The study

packs contain both class exercises and independent exercises relating to the

programming concept being taught that week. There is a project week in Part B

that includes a series of related tasks.

2. Class exercises will be assessed. Each week contains between four to six class

exercises. Your tutor will monitor your progress in these each week. These class

exercises are worth 40% of your Part A mark.

3. Independent studies will be assessed. The code for these tasks will be

assessed on their efficiency, syntax, correct use of concept, and whether the code

fulfils the requirements of the task. Some tasks may also require additional

documentation such as test plans and algorithms. Please include screenshots of

your code running and comments where relevant. You must complete these

independent exercises on your own outside of the session. These exercises

are worth 60% of your Part A mark.

4. Create a logbook (for example: an MS Word document) to document your code.

The logbook should contain your designs, algorithms, test plans, source code and

results of your work. This must be submitted electronically through the

designated TurnItIn submission point (your tutor will show you). If there is a

technical problem and you cannot submit through TurnItIn, please speak to

someone from the administration office (E4.08).

5. Your mark for this module will be based on your grades for each of the parts (A, B,

C). Below shows the weighting for each part of the coursework:

Part A: 30% of module mark
 Week 1 and 2 class exercises = 30% of Part A mark
 Week 1 and 2 independent exercises = 40% of Part A mark
 Week 3 Project (all exercises) = 30% of Part A mark
Part B: 40% of module mark
 Week 5 (TBD), Week 6 (TBD), Week 7 (TBD), Week 8 (TBD)
Part C: 30% of module mark
 Week 10 (TBD), Week 11 (TBD), Week 12 (TBD)

 Page 27 of 28

C# Console and Windows Programming using Visual C#.Net

Grade related criteria for Programming - CO453

A

Where the student has demonstrated clear evidence of an excellent understanding of the theories and
principles together with a high degree of analytical accuracy, good design skills, implementing fully
tested solutions that show reliability, maintainability, readability and minimal complexity and correct
form of presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 85% of independent study for each
week.

B

Where the student has demonstrated clear evidence of a good understanding of the theories and
principles together with a good analytical ability, good design skills, implementing solutions that show
reliability, maintainability, readability and minimal complexity and correct form of presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 75% the independent study for each
week.

C

Where the student has demonstrated a reasonable understanding of the theories and principles
together with a reasonable analytical ability, design skills, implementing solutions that appreciate the
need for reliability, maintainability, readability and minimal complexity and reasonable presentation
skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 66% of the independent study for each
week.

D

Where the student has demonstrated an understanding of the theories and principles of analysis,
design, implementation and presentation skills.
To acquire the knowledge and skills to demonstrate the above the student will normally be expected to
attend the lecture and practical sessions and attempt at least 50% of the independent study for each
week.

E

Where the student has made a genuine attempt to acquire the knowledge and skills but requires
further application and study to demonstrate an understanding of the theories and principles of
analysis, design, implementation and presentation skills.
In order to demonstrate a genuine attempt the student will normally be expected to attend the lecture
and practical sessions and attempt at least 40% of the independent study.

F

Where the student has clearly not acquired sufficient knowledge and skills and not attempted or coped
with the directed study with any degree of competence regarding theories, principles, analysis, design,
and implementation and presentation skills
or
where the student has NOT attended for assessment
or
where the student has copied work from an alternative source.

 Page 28 of 28

C# Console and Windows Programming using Visual C#.Net

Module Name and code Application Programming CO453

Staff: Richard Jones, Richard Mather, Carlo Lusuardi & Nick Day

Learning Outcomes:

• Analyse a simple requirement in a structured manner

• Design, document, implement and test reliable, maintainable programs as solutions to simple
problems

• Use structured techniques of design and implementation and good documentation practice.

• Use software development tools.

Teach
WK

Uni

WK
LECTURE/TUTORIAL PRACTICAL

1 19 C# (Console) 4 Methods and Parameters C# Directed Study Unit 4

2 20 C# (Console) 5 Arrays C# Directed Study Unit 5

3 21 C# (Console) The Project C# Directed Study Project Unit

4 22 Workshop week

5 23 Windows C#1 Introduction & Splash Screen C# Directed Study Unit 1

6 24 Windows C#2 SPS Game C# Directed Study Unit 2

7 25 Windows C#3 Other .NET Controls C# Directed Study Unit 3

8 26 Windows C#4 Multiform projects C# Directed Study Unit 4

9 27 Workshop week

28-
30

Spring Recess – (Easter)

10 31 Windows C#5 Animation C# Directed Study Unit 5

11 32 Windows C#6 Graphics C# Directed Study Unit 6

12 33 Windows C#7 The .Net Project C# Directed Study Unit 7

13 34 Workshop week

28 ** C# Windows Log Book hand-in **

Course Texts:
Comprehensive Course Notes are provided
 Bradley & Millspaugh, Programming in C#, 2010, pub: McGraw Hill
 Deitel & Deitel, Visual C# 2010 How to Program, 2011, pub: Pearson

